Blocking unions of arborescences
نویسندگان
چکیده
منابع مشابه
Blocking unions of arborescences
Given a digraphD = (V,A) and a positive integer k, a subset B ⊆ A is called a k-unionarborescence, if it is the disjoint union of k spanning arborescences. When also arc-costs c : A → R are given, minimizing the cost of a k-union-arborescence is well-known to be tractable. In this paper we take on the following problem: what is the minimum cardinality of a set of arcs the removal of which destr...
متن کاملBlocking Optimal Arborescences
The problem of covering minimum cost common bases of two matroids is NP-complete, even if the two matroids coincide, and the costs are all equal to 1. In this paper we show that the following special case is solvable in polynomial time: given a digraph D = (V,A) with a designated root node r ∈ V and arc-costs c : A → R, find a minimum cardinality subset H of the arc set A such that H intersects...
متن کاملBlocking Optimal k-Arborescences
Given a digraph D = (V,A) and a positive integer k, an arc set F ⊆ A is called a karborescence if it is the disjoint union of k spanning arborescences. The problem of finding a minimum cost k-arborescence is known to be polynomial-time solvable using matroid intersection. In this paper we study the following problem: find a minimum cardinality subset of arcs that contains at least one arc from ...
متن کاملPacking Arborescences
In [7], Edmonds proved a fundamental theorem on packing arborescences that has become the base of several subsequent extensions. Recently, Japanese researchers found an unexpected further generalization which gave rise to many interesting questions about this subject [29], [20]. Another line of researches focused on covering intersecting families which generalizes Edmonds' theorems in a di eren...
متن کاملDisjoint paths in arborescences
An arborescence in a digraph is a tree directed away from its root. A classical theorem of Edmonds characterizes which digraphs have λ arc-disjoint arborescences rooted at r. A similar theorem of Menger guarantees λ strongly arc disjoint rv-paths for every vertex v, where “strongly” means no two paths contain a pair of symmetric arcs. We prove that if a directed graph D contains two arc-disjoin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Optimization
سال: 2016
ISSN: 1572-5286
DOI: 10.1016/j.disopt.2016.08.003